We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Wearable Biomedical Device Helps Combat Diabetes

By LabMedica International staff writers
Posted on 05 Apr 2016
An innovative graphene-based patch is capable of noninvasive blood sugar monitoring and feedback therapy by analyzing human sweat.

Developed by researchers at the Institute for Basic Science (IBS; Daejeon, Republic of Korea) the patch integrates electrochemically-active and soft functional materials on a gold-doped graphene and serpentine-shape gold mesh hybrid patch. The enzyme-based glucose sensor also enables systematic corrections of sweat glucose measurements as affected by pH and temperature, while a humidity sensor monitors the increase in relative humidity (RH). About 15 minutes are needed for the sweat-uptake layer of the patch to reach a RH over 80%, at which time glucose and pH measurements are initiated.

Image: The GP-hybrid electrochemical device array (Photo courtesy of IBS Center for Nanoparticle Research).
Image: The GP-hybrid electrochemical device array (Photo courtesy of IBS Center for Nanoparticle Research).

If abnormally high levels of glucose are detected, drugs can be released into the bloodstream via loaded microneedles. In an experiment to test the patch on diabetic mice, microneedles pierced the skin of the mouse near the abdomen, releasing Metformin into the bloodstream. The mice treated with microneedles showed a significant suppression of blood glucose concentrations with respect to control groups. The malleable, semi-transparent, skin-like appearance of the GP device also provides comfortable contact with human skin. The study was published on March 22, 2016, in Nature Nanotechnology.

“Our wearable GP-based device is capable of not only sweat-based glucose and pH monitoring, but also controlled transcutaneous drug delivery through temperature-responsive microneedles,” said lead author Kim Dae-Hyeong, PhD, of the IBS Center for Nanoparticle Research. “One can easily replace the used microneedles with new ones. Treatment with Metformin through the skin is more efficient than that through the digestive system because the drug is directly introduced into metabolic circulation.”

Type II diabetes affects some three million Koreans, with the figure increasing due to dietary patterns and an aging society. The current treatments available to diabetics are painful, inconvenient and costly, and regular visits to a doctor and home testing kits are needed to record glucose levels. Patients also have to inject uncomfortable insulin shots to regulate glucose levels. According to IBS, the device could facilitate the process and reduce lengthy and expensive cycles of visiting doctors and pharmacies.

Related Links:

Institute for Basic Science



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Latest Clinical Chem. News

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Highly Reliable Cell-Based Assay Enables Accurate Diagnosis of Endocrine Diseases