We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Capillary Zone Electrophoresis Developed for Rapid Determination of Thalassemia

By LabMedica International staff writers
Posted on 11 Jun 2015
A capillary zone electrophoresis (CZE) method has been developed for human globin determination in the diagnosis of thalassemia and hemoglobin variants as analysis of globin chains is an important aspect of thalassemia diagnostics.

Thalassemia is an inherited autosomal recessive blood disorder characterized by the underproduction of globin chains as a consequence of globin gene defects, resulting in malfunctioning red blood cells and oxygen transport.

Image: The P/ACE MDQ Capillary Electrophoresis System (Photo courtesy of Beckman Coulter Inc.).
Image: The P/ACE MDQ Capillary Electrophoresis System (Photo courtesy of Beckman Coulter Inc.).

Medical scientists at the Southern Medical University (Guangzhou, China) evaluated an assay on blood samples obtained from anticoagulated whole blood from a total of 310 clinical samples consisting of 58 normal, 107 α-thalassemia silent/trait, 42 β-thalassemia carriers and 63 β-thalassemia major and β-thalassemia intermedia (β -TM/TI), and 40 others with various hemoglobinopathies.

Hemoglobin analysis was carried out using the high-performance liquid chromatography (HPLC, Variant II, Bio-Rad Laboratories; Hercules, CA, USA). Capillary zone electrophoresis (CZE) was performed using a P/ACE MDQ Capillary Electrophoresis System (Beckman Coulter Inc.; Fullerton, CA, USA) equipped with a 70 cm × 50 μm uncoated fused-silica capillary at 25 °C.

Distinct globin peaks were resolved in 17 minutes and coefficients of variation (CV) for migration time and areas ranged from 0.37% to 1.69% and 0.46% to 6.71%, respectively. Receiver operating characteristic (ROC) curve analysis of the α/β area ratios gave 100% sensitivity and specificity for indicating β-TI/TM, and 100% sensitivity and 97.4% specificity for Hb H disease. Hemoglobin G-Honolulu (Hb G-Honolulu) and Hb Westmead (Hb WS) were successfully detected using this CZE method.

The authors concluded that they had successfully developed a simple, rapid, high-resolution CZE method for the separation of globin chains using highly acidic buffer and uncoated capillaries. Using this method, α-, β- and γ-chains, and αWS and αG Honolulu  chains were successfully separated within 17 minutes, indicating suitability for routine clinical applications. The migration times and globin chain peak areas were highly reproducible; although not as rapid as existing high-throughput HPLC techniques. This CZE method may provide an attractive complementary and/or confirmatory approach. The study was published in the June 2015 issue of the journal Blood Cells Molecules and Diseases.

Related Links:

Southern Medical University 
Bio-Rad Laboratories  
Beckman Coulter Inc.



New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Chemistry Analyzer
MS100
New
Lab Sample Rotator
H5600 Revolver

Latest Clinical Chem. News

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Integrated Chemistry and Immunoassay Analyzer with Extensive Assay Menu Offers Flexibility, Scalability and Data Commutability