We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2025 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Immunohistochemistry as Effective as DNA Hybridization for Detecting ALK Rearrangement in Lung Cancer Patients

By LabMedica International staff writers
Posted on 08 Jul 2013
A team of Chinese researchers demonstrated that immunohistochemistry (IHC) provided a reliable and cost-effective diagnostic approach in routine pathologic laboratories for the identification of patients with non-small-cell lung cancer (NSCLC), in particular adenocarcinomas (ADCs), suitable for ALK-targeted therapy.

The ALK gene can be oncogenic in three ways: by forming a fusion gene with any of several other genes, by gaining additional gene copies, or with mutations of the actual DNA code for the gene itself. The EML4-ALK (echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase) fusion gene is responsible for approximately 3%–5% of cases of NSCLC. The standard tests used to detect this gene in tumor samples is fluorescence in situ hybridization (FISH), and Reverse Transcriptase-PCR (RT-PCR). The FISH technique utilizes a DNA probe labeled with a fluorescent dye that is hybridized with target DNA, usually chromosome preparations on a microscopic slide. It is used to precisely map genes to a specific region of a chromosome in prepared karyotype, or can enumerate chromosomes, or can detect chromosomal deletions, translocations, or gene amplifications in cancer cells.

As IHC is a less complex and less costly technology than FISH, investigators at the Chinese University of Hong Kong SAR (China) evaluated its practical usefulness for detection of ALK rearrangement in NSCLC ADCs. They tested 373 lung ADCs for ALK rearrangement by IHC and FISH. Multiplex RT-PCR was performed to confirm the fusion variants.

Results showed that 22 of 373 lung ADCs (5.9%) were positive for ALK immunoreactivity. ALK-positive tumor cells demonstrated strong and diffused granular staining in the cytoplasm. All the ALK IHC-positive cases were confirmed to harbor ALK rearrangement, by either FISH, or RT-PCR. Two cases that were positive for ALK protein expression by IHC, but negative by FISH were shown to harbor EML4-ALK variant 1 by RT-PCR. None of the ALK IHC-negative cases was FISH-positive.

These results allowed the investigators to conclude that, "IHC can effectively detect ALK rearrangement in lung cancer. It might provide a reliable and cost-effective diagnostic approach in routine pathologic laboratories for the identification of suitable candidates for ALK-targeted therapy."

The study was published in the July 2013 issue of the Journal of Thoracic Oncology.

Related Links:
Chinese University of Hong Kong



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Laboratory Software
ArtelWare
New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay

Latest Clinical Chem. News

Chemical Imaging Probe Could Track and Treat Prostate Cancer
08 Jul 2013  |   Clinical Chem.

Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
08 Jul 2013  |   Clinical Chem.

VOCs Show Promise for Early Multi-Cancer Detection
08 Jul 2013  |   Clinical Chem.



GLOBE SCIENTIFIC, LLC