Blood Test for Cardiac Protein Diagnoses Heart Attack

By LabMedica International staff writers
Posted on 17 Nov 2011
A novel blood test for a cardiac biomarker has been used to determine whether a patient has had a heart attack.

The test measures a large protein known as cardiac myosin binding protein-C (cMyBP-C), which is released into the blood following a cardiac event.

Scientists at Loyola University Chicago (Maywood, IL, USA) quantified plasma levels of cMyBP-C by a sandwich enzyme-linked immunosorbent assay (ELISA) using capture monoclonal anti-cMyBP-C, E7 and a detection rabbit polyclonal antibody anti-cMyBP-CC0–C1. Plasma cardiac troponin (cTnI) levels were also measured by a commercial sandwich ELISA. To determine the sensitivity of the sandwich ELISA for cMyBP-C, the investigators defined the limit of detection values and quantification for lower and upper limits. The values of lower limit of quantification and upper limit of quantification were 0.02 ng/ml and 2,053 ng/ml, respectively.

Plasma samples were collected from 16 myocardial infarction) MI) patients and 11 normal healthy controls. Importantly, cMyBP-C and cTnI levels in the plasma samples of healthy controls were very low, 0.95 ± 0.34 ng/mL and 0.238 ± 0.07 ng/mL, respectively. Strikingly, the concentration of cMyBP-C in the plasma of MI patients was significantly increased to 227 ± 50 ng/mL, compared to controls and greater than plasma cTnI levels at 30 ± 9 ng/mL. The anti-cMyBP-C, E7 monoclonal antibody used in this study is a product Santa Cruz Biotechnology (Santa Cruz, CA, USA). The human cardiac troponin assay was produced by Calbiotech (San Diego, CA, USA).


Sakthivel Sadayappan, PhD, senior author of the study said, "This potentially could become the basis for a new test, used in conjunction with other blood tests, to help diagnose heart attacks. This is the beginning. A lot of additional studies will be necessary to establish cMyBP-C as a true biomarker for heart attacks." The authors concluded that future studies would determine the time course of release, peak concentrations, and half-life in the circulatory system. The study was available online since September 19, 2011, in the Journal of Molecular and Cellular Cardiology.

Related Links:
Loyola University Chicago
Santa Cruz Biotechnology
Calbiotech



Latest Clinical Chem. News