We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Stem Cell Therapy Repairs Damaged Heart Muscle in Mouse Myocardial Infarction Model

By LabMedica International staff writers
Posted on 13 Mar 2016
Advanced stem cell techniques were used to generate expandable cardiovascular progenitor cells (ieCPCs) from skin fibroblasts, which could repair damage to the heart muscle caused by myocardial infarction.

Use of stem cells to repair damaged heart muscle has been only partially successful due to failure of the cells to self-renew or failure to generate all three types of cells—cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs)—that the heart requires to heal and function properly.

Image: The three types of heart cells—cardiomyocytes, endothelial cells, and smooth muscle cells—created from ieCPCs (Photo courtesy of Dr. Yu Zhang, Gladstone Institutes).
Image: The three types of heart cells—cardiomyocytes, endothelial cells, and smooth muscle cells—created from ieCPCs (Photo courtesy of Dr. Yu Zhang, Gladstone Institutes).

In the current study, investigators at the University of California, San Francisco's Gladstone Institutes (USA) worked with a mouse heart disease model. They isolated a cell population with extensive proliferation capacity and restricted cardiovascular differentiation potentials during cardiac transdifferentiation of mouse fibroblasts. These induced expandable cardiovascular progenitor cells (ieCPCs) proliferated extensively for more than 18 passages in chemically defined conditions, with 105 starting fibroblasts robustly producing 1016 ieCPCs.

The investigators reported in the March 3, 2016, online edition of the journal Cell Stem Cell that the ieCPCs expressed cardiac signature genes and readily differentiated into functional cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) in vitro, even after long-term expansion. When transplanted into mouse hearts following myocardial infarction, ieCPCs spontaneously differentiated into CMs, ECs, and SMCs and improved cardiac function for up to 12 weeks after transplantation.

"Cardiac progenitor cells could be ideal for heart regeneration," said senior author Dr. Sheng Ding, professor of pharmaceutical chemistry at the Gladstone Institutes. "They are the closest precursor to functional heart cells, and, in a single step, they can rapidly and efficiently become heart cells, both in a dish and in a live heart. With our new technology, we can quickly create billions of these cells in a dish and then transplant them into damaged hearts to treat heart failure."

Related Links:

Gladstone Institutes



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries