We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Apoferritin-Based Nanocapsules Used to Transport Toxic Anticancer Drug

By LabMedica International staff writers
Posted on 09 Nov 2015
A toxic anticancer therapeutic agent was encapsulated in capsules derived from apoferritin, which sequestered the drug until its selective delivery to cancer cells.

Ferritin is a globular protein complex consisting of 24 protein subunits and is the primary intracellular iron-storage protein in both prokaryotes and eukaryotes, keeping iron in a soluble and non-toxic form. Ferritin that is not combined with iron is called apoferritin.

Image: Structure of the ferritin complex. The toxic anticancer drug daunorubicin was sequestered at the core of the molecule, protected by the protein coat (Photo courtesy of Wikimedia Commons).
Image: Structure of the ferritin complex. The toxic anticancer drug daunorubicin was sequestered at the core of the molecule, protected by the protein coat (Photo courtesy of Wikimedia Commons).

Investigators at Washington State University (Pullman, USA) were looking for a better way to administer the anticancer drug daunorubicin. This drug interacts with DNA by intercalation and inhibition of macromolecular biosynthesis. This inhibits the progression of the enzyme topoisomerase II, which relaxes supercoils in DNA for transcription. Daunorubicin stabilizes the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication. The drug is administered via rapid intravenous infusion. It cannot be given intramuscularly or subcutaneously, since it may cause extensive tissue necrosis. If administered into the spinal canal, it will cause extensive damage to the nervous system and may lead to death.

To circumvent daunorubicin's toxic properties the investigators loaded a mixture of the hydrophobic drug and hydrophilic poly-L-aspartic acid (PLAA) into molecules of apoferritin under slightly acidic conditions that caused the apoferritin molecules to swell. Back at normal pH, the surface of the drug-carrying apoferritin capsules was modified with hyaluronic acid (HA), which targeted the capsules to the cancer cells' to the HA-receptor CD44.

The drug-bearing capsules were used to treat cultures of human embryonic lung MRC-5 cells and lung cancer A549 cells. Results published in the October 2015 issue of the journal Biomaterials Science revealed that the drug was maintained within the capsules until delivery and subsequent uptake by the cancer cells. Release of the drug by the acidic environment of the cancer cells resulted in death of more than 70% of them with no damage to normal cells.

"Our efficiency in killing the cancer cell was very high with no toxicity to normal cells,'' said senior author Dr. Yuehe Lin, professor of mechanical and materials engineering at Washington State University. "At the cell level, we were able to demonstrate it was very effective.''

Related Links:

Washington State University



Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Unit-Dose Packaging solution
HLX
New
Thyroid ELISA Kit
AESKULISA a-TPO
New
ELISA System
ABSOL HS DUO

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries