We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mini-Organism-on-a-Chip May Replace Test Animals in Drug Studies

By LabMedica International staff writers
Posted on 17 Feb 2015
A team of German biomedical researchers has developed a highly miniaturized micro-circulatory system for testing the response of various body organs to drugs or other chemicals.

Investigators at the Fraunhofer Institute for Material and Beam Technology IWS (Dresden, Germany) and colleagues at the Institute for Biotechnology at the Technical University of Berlin (Germany) have been working at the cutting edge of research dedicated to replacing test animals with relevant, reproducible alternatives.

Image: Using the compact multi-organ chip (comparable in size to a one-euro piece), and those of three separate microcircuits, researchers can study the regeneration of certain kidney cells (Photo courtesy of Fraunhofer Institute for Material and Beam Technology IWS).
Image: Using the compact multi-organ chip (comparable in size to a one-euro piece), and those of three separate microcircuits, researchers can study the regeneration of certain kidney cells (Photo courtesy of Fraunhofer Institute for Material and Beam Technology IWS).

To this end they developed a "mini-organism-on-a-chip." This system was designed to mimic the physiology of a human being on a scale of 1:100,000. The chip carries a series of micro-compartments that can be loaded with cells from different organs and are connected by a micro-channel circulatory system. A miniature pump is capable of manipulating flow rates of less than 0.5 microliters per second through the channels. This system ensures there is a constant flow of liquid cell culture medium throughout the mini-organism. The exact configuration of the chip—the number of mini-organs and the connection to the micro-channels—can be changed to accommodate different sets of questions and different applications.

“Most medications work systemically— that is to say, on the organism as a whole. In doing so, toxic substances frequently emerge through metabolic processes, which in turn damage only certain organs,” said Dr. Frank Sonntag, project leader at the Fraunhofer Institute for Material and Beam Technology. “We know today that certain kidney cells, the endothelial cells, play a key role in almost every kidney disease. With the in vitro tests to date, there was always the problem that the endothelial cells worked only under current. Here, our multi-organ chip could offer a test environment that would allow you to observe how cells regenerate following an injury."

Related Links:

Fraunhofer Institute for Material and Beam Technology IWS
Institute for Biotechnology at the Technical University of Berlin



New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Unit-Dose Packaging solution
HLX
New
Incubator
HettCube 120
New
Silver Member
Rubella Infection ELISA
ReQuest RUBELLA IgM ELISA Kit

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries