We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genetic Techniques May Lead to New Therapeutic Approaches for Cardiovascular Diseases

By LabMedica International staff writers
Posted on 19 Jun 2014
A review summarized the state-of-the-art in the field of genome-based therapies for cardiovascular diseases.

Despite statistics showing that the death rate from heart disease has fallen about 39% percent over the past 10 years, heart disease remains the number-one cause of death in the United States, killing almost 380,000 people a year. As several recent approaches to treating the wide range of heart diseases have failed for lack of efficacy, the author of the review, Dr. Daniel J. Rader, professor of genetics at the University of Pennsylvania (Philadelphia, USA) has suggested that human genetics-based technologies have the potential to identify new targets for which the likelihood of therapeutic success is considerably greater.

Among the problems he cited in the June 4, 2014, issue of the journal Science Translational Medicine were (1) many biopharmaceutical companies have begun to back away from efforts to discover and develop therapies for this prevalent disease; (2) seven drugs have failed in phase III clinical trials in the last three to five years; and (3) animal models of atherosclerosis have not proven reliable at predicting new therapies that are effective in humans.

Dr. Rader suggested that as with recent successes in cancer immunotherapy, basing drug targets on human genetics may provide greater confidence that a therapeutic targeted to a particular pathway will show clinical benefit in reducing major cardiovascular events in people. In the review he cited studies of common variants associated with cardiovascular diseases that had yielded nearly 50 statistically significantly associated discrete genetic loci genome-wide. Less than a third were associated with such traditional risk factors as LDL-C (low density lipoprotein-cholesterol) levels or blood pressure, leaving more than 30 loci with no association with traditional measureable risk factors.

"Some of the most interesting new targets for atherosclerotic cardiovascular disease are likely to come from genetic studies of common and rare variants, comparing individuals with early disease with those who are free of disease," said Dr. Rader.

Related Links:
University of Pennsylvania



Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries