We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mass Spectrometry Technology Maps Chemicals as They Migrate Into Skin

By LabMedica International staff writers
Posted on 14 May 2014
A mass spectrometry technique gaining acceptance for medical applications such as imaging tumor surfaces can also be used to analyze the migration of small-molecule compounds applied to the skin. Because skin is such a complicated organ, the technology could be a helpful for developing transdermal drugs.

The study’s findings were published April 28, 2014, in the Journal of the American Chemical Society. Stanford University (Stanford, CA, USA) chemistry Profs. Richard N. Zare and Justin Du Bois, postdoc Livia S. Eberlin, graduate student John V. Mulcahy, and colleagues revealed that desorption electrospray ionization-mass spectrometry (DESI-MS) imaging has many advantages over other approaches that require complicated preparation of skin samples.

Moreover, DESI-MS imaging can be performed under ambient settings, instead of in a vacuum condition, as other MS methods require. Furthermore, test compounds do not have to be radioactively labeled or tagged with unwieldy dye molecules that could affect the compounds’ normal migration through skin. “That’s why this method is very appealing,” said Mark R. Prausnitz, a chemical and biomolecular engineering professor who heads the Laboratory for Drug Delivery at Georgia Institute of Technology (Atlanta, GA, USA).

DESI-MS was developed 10 years ago and involves spraying charged solvent droplets at a surface. Backsplash droplets containing dissolved molecules are then captured and examined using a mass spectrometer. The technology has been used for medical applications such as imaging drugs in tissue samples.

The Stanford scientists chose a number of small molecules that change sodium channels in skin cells, including lidocaine and a shellfish toxin. They applied them to the surface of skin samples and were able to track the compounds’ migration to a depth of 1.2 mm.

Such studies of drug migration are required to enlarge the limited selection of transdermal drugs, according to Prof. Prausnitz. Only approximately 30 agents, such as nicotine, have transdermal versions. The drugs must be small, lipophilic, and effective at a low dose. With this newly adapted tool, however, scientists could more readily study methods to enhance skin permeation, Prof. Prausnitz reported. “We’re very interested in the pathway--which part of the skin did the drug go through?”

Related Links:

Stanford University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries