We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cancer Research to Benefit from Development of a Whole-Genome, Cancer-Specific Microarray

By LabMedica International staff writers
Posted on 14 Mar 2013
An agreement between a British biotech company and an American-based genomic research consortium paves the way for the development of a whole-genome, cancer-specific microarray.

The biotech company Oxford Gene Technology (Oxford, United Kingdom) will design the microarray for the Cancer Cytogenomics Microarray Consortium (New Orleans, LA, USA). The array will incorporate probes for over 500 cancer genes and 130 cancer-associated genomic regions for hematological and solid tumors. The aim is to improve cancer research through the accurate identification of DNA copy number changes, and loss of heterozygosity associated with different cancer types.

Oxford Gene Technology was chosen following the recent development and commercialization of its CytoSure Haematological Cancer +SNP Array, which targets the four common hematological cancers: chronic lymphocytic leukemia, multiple myeloma, myeloproliferative neoplasms, and myelodysplastic syndrome.

The CytoSure Haematological Cancer +SNP array combines long oligo array comparative genomic hybridization probes for superior copy number detection with fully research-validated single nucleotide polymorphism (SNP) content for accurate identification of loss of heterozygosity without concurrent changes in gene copy number. The array content has been optimized to target regions known to be important in hematological cancers while providing good backbone coverage. CytoSure Interpret Software, which accompanies all CytoSure arrays, is a powerful, easy-to-use package for the analysis of copy number variation (CNV) and SNP data. Innovative features enable the automation of data analysis workflows, minimizing the need for user intervention and maximizing the consistency and speed of data interpretation.

The Cancer Cytogenomics Microarray Consortium (New Orleans, LA, USA) was formed in August 2009 by a group of clinical cytogeneticists, molecular geneticists, and molecular pathologists, who were interested in applying microarray technologies to cancer diagnosis and cancer research. The mission of the consortium is to promote communication and collaboration among cancer cytogenomics laboratories. The specific goals are to (1) establish platform-neutral and cancer specific microarray designs for diagnostic purposes, (2) share cancer microarray data between participating institutions for education purposes, (3) create a public cancer array database, and (4) carry out multicenter cancer genome translational research. Today, the consortium has grown to include more than 300 members from over 150 organizations in the US, Canada, and in other countries.

“The use of microarray technology will substantially improve the facility of cytogenetics research laboratories to identify cancer,” said Dr. M. Anwar Iqbal, president of the Cancer Cytogenomics Microarray Consortium. “The Cancer Cytogenomics Microarray Consortium board appreciates the efforts of companies such as Oxford Gene Technology to making the Cancer Cytogenomics Microarray Consortium cancer array design available to the cytogenetics research community worldwide.”

Related Links:

Oxford Gene Technology
Cancer Cytogenomics Microarray Consortium



Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Static Concentrator
BJP 10
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries