We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo
Medica 2024
Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Synthetic Platelets Could Eventually Be Used For Biomedical Applications

By LabMedica International staff writers
Posted on 07 Jun 2012
Scientists have succeeded in making synthetic platelets, which after optimization and exhaustive testing, could be suitable for a number of biomedical applications

At University of California (UC) Santa Barbara (USA) scientists used a polymeric template––a core upon which layers of proteins and polyelectrolytes were deposited, layered, and crosslinked to create a stable synthetic platelet-shaped particle. The rigid polymeric core was then dissolved to give the particle the desired flexibility. The particle was then coated with proteins found on the surface of activated natural platelets or damaged blood vessels, a procedure performed by the researchers at Scripps Research Institute (Scripps Research Institute (La Jolla, CA, USA). Scientists at Sanford-Burnham Institute (La Jolla, CA, USA) collaborated in the project.

Image: Diagram, an artist's rendering of artificial platelets and artificial red blood cells alongside their natural counterparts (Photo courtesy of Peter Allen).
Image: Diagram, an artist's rendering of artificial platelets and artificial red blood cells alongside their natural counterparts (Photo courtesy of Peter Allen).

Smaller than red blood cells, platelets are flexible, disk-shaped cells that are 2-4 µm in size. They are the components of blood that allow it to prevent excessive bleeding and to heal wounds. The synthetic platelets can be used not only to perform the typical functions of human platelets. They may also be used to carry imaging agents to identify damaged blood vessels or to deliver drugs that dissolve blood clots.

The synthetic platelets represent one of the most advanced efforts over the last century to mimic platelet function. While clotting factors and platelets from outside donors are used widely to halt bleeding, immune system responses and thrombosis have been issues.

The development is a significant milestone in the field of biomimetic materials," said Samir Mitragotri, professor of chemical engineering, director of UC Santa Barbara's Center for Bioengineering, and an author of a paper published in the journal Advanced Materials on May 29, 2012. "By capitalizing on our capabilities in engineering materials, […] our synthetic platelets combine unique physical and biological attributes that mimic natural platelets."

Related Links:

University of California, Santa Barbara
Scripps Research Institute
Sanford-Burnham Institute




New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Serum Toxicology Benzodiazepine Assay
DRI Serum Toxicology Benzodiazepine Assay
New
Flu Test
ID NOW Influenza A & B 2

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries