Unique Range of Anticancer Compounds Synthesized

By LabMedica International staff writers
Posted on 17 Mar 2010
U.S. scientists have fine-tuned the process for synthesizing a family of compounds with the potential to kill cancer and other diseased cells, and have found that they represent a distinctive category of anticancer agents.

The discovery appears in the February 15, 2010, online edition of the Journal of the American Chemical Society (JACS). The researchers, from Yale University (New Haven, CT, USA), examined a family of compounds known as the kinamycins, which are naturally produced by bacteria during metabolism and are known for their powerful toxicity. For years, scientists have guessed that a core structure common to the different compounds within the group was responsible for this toxicity. Until now, chemists could not evaluate the core structure because there was no simple way to create it in the laboratory.

Now the Yale team has developed a new method to recreate a structure that allows them to synthesize the kinamycins with much greater efficiency than previously possible. While scientists have produced kinamycins in the laboratory in the past, the Yale team was able to halve the number of steps required to go from simple, easily obtainable precursors to the complete molecule--from 24 down to 12. "By shortening the synthesis we can now prepare these molecules in the quantities required for further studies, including animal studies and even clinical trials,” said Dr. Seth Herzon, assistant professor of chemistry and lead author of the study.

Working with researchers at the Yale School of Medicine and the Yale Chemical Genomics Screening Facility, the investigators have begun testing several of the compounds against cancer cells, with promising early findings. Next, they will work to understand the precise mechanism that makes the compounds, which are benign on their own, highly toxic once they penetrate cells. "The key to success will be whether we can develop selectivity--whether we can kill cancer cells in the presence of noncancerous tissue,” Dr. Herzon said. "Based on what we already know about the chemical reactivity of these molecules, I'm optimistic we can do this.”

The reactive core of the kinamycins also plays a key role in another compound the team is studying, called lomaiviticin A, which is even more toxic and could prove even more effective in destroying cancer cells. "Lomaiviticin A is the big fish. It's more potent than the kinamycins, but it's also much harder to synthesize,” Dr. Herzon stated.

Both the kinamycins and lomaiviticin A are unique in their toxicity profiles, according to Dr. Herzon, representing a new category of anticancer agents. "There's no close analogy to draw from to predict how these molecules will behave, which will make it especially interesting to see where this research takes us,” Dr. Herzon concluded. "This research involves a lot of exciting chemistry, but it also has real applications in biology and human medicine.”

Related Links:

Yale University




Latest BioResearch News