We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Tiny Injector Speeds Development of Newer, Safer Drugs

By LabMedica International staff writers
Posted on 21 Nov 2009
A palm-sized micro-injector could vastly increase preclinical trials for drug development and genetic engineering, and provide greater control of the process.

Researchers at McMaster University (Hamilton, ON, Canada) developed the automated microfluidic micro-injector, which can insert proteins, DNA, and other biomolecules into individual cells at volumes exponentially higher than current procedures, and at a fraction of the cost. The micro-injector has a cell-wide channel cast on a silicon chip that guides cells and embryos to the injection site. A similar channel guides the injection reagent to a needle as thin as 10 micrometers--one-tenth the diameter of a human hair. A buckling method is used to drive the needle through a cell's pliable outer membrane accurately and to the proper depth. The injection dosage is controlled electrically, as is monitoring of the needle's position. The researchers have also developed methods to sharpen the needle, ensuring minimal injection damage or interference to the cell. Notably absent is the need for a microscope or optical magnification to conduct the process, which is required for manual injection and to monitor transfection methods. The microfluidic device also allows easy integration of postprocessing operations, including cell sorting and the testing of cell viability on the same chip.

Image: Microfluidic micro-injector (Photo courtesy of McMaster University).
Image: Microfluidic micro-injector (Photo courtesy of McMaster University).

"This device is to drug discovery what the assembly line was to the automobile or the silicon chip to information technology,” said lead author Ravi Selvaganapathy, Ph.D., an assistant professor of mechanical engineering at McMaster. "It turns what was a complex, resource-intensive process available to a few into an automated, predictable, reliable, and low-cost system accessible to almost anyone.”

"Almost every researcher would be able to have this device at their disposal in their own labs,” added Professor Selvaganapathy. "The micro-injectors can easily be run in parallel and allow for scientists to test far greater combinations of materials in a much shorter time than current processes. It also makes it more feasible to pursue drug discovery for many so-called neglected diseases.”

The micro-injector also holds great promise for in vitro fertilization (IVF), as it provides far greater accuracy and control than current manual injection procedures, which have high rates of failure, require trained expertise, and can be time intensive.

Related Links:
McMaster University






New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test
New
Urine Bone Markers Control
Lyphochek Urine Bone Markers Control

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries