We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biochemists Present First 3D Crystal Structure of a Nonribosomal Peptide Synthetase

By LabMedica International staff writers
Posted on 03 Feb 2016
A team of Canadian biochemists has presented a series of three-dimensional (3D) X-ray crystallography structures of the initiation module of the antibiotic-producing nonribosomal peptide synthetase (NRPS) megaenzyme, linear gramicidin synthetase.

NRPSs are very large proteins that produce small peptide molecules with wide-ranging biological activities. Each nonribosomal peptide synthetase can synthesize only one type of peptide. Nonribosomal peptides often have cyclic and/or branched structures, can contain non-proteinogenic amino acids including D-amino acids, carry modifications like N-methyl and N-formyl groups, or are glycosylated, acylated, halogenated, or hydroxylated. Cyclization of amino acids against the peptide "backbone" is often performed, resulting in oxazolines and thiazolines; these can be further oxidized or reduced. On occasion, dehydration is performed on serines, resulting in dehydroalanine. This is just a sampling of the various manipulations and variations that nonribosomal peptides can perform.

In the January 14, 2016, issue of the journal Nature, investigators at McGill University (Montreal, QC, Canada) presented a series of three-dimensional X-ray crystal structures of the initiation module of the antibiotic-producing NRPS, linear gramicidin synthetase. This module included the specialized tailoring formylation domain, and states were captured that represented every major step of the assembly-line synthesis in the initiation module.

The investigators reported that the transitions between conformations were large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlighted the great versatility of NRPSs, as small domains repurposed and recycled their limited interfaces to interact with their various binding partners.

"This is the most complete view we have ever had of these enzymes in action," said senior author Dr. Martin Schmeing, professor of biochemistry at McGill University. "Even though megaenzymes are the second-biggest proteins known to man, they are still very small molecules and they are very mobile, so it is difficult to see them at work."

Related Links:

McGill University



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Thyroxine ELISA
T4 ELISA
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries