We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Test to Ensure Essential Treatment for Newborns with Serious Genetic Disease

By LabMedica International staff writers
Posted on 16 Mar 2023
Print article
Image: A new test could greatly improve quality of life for infants with homocystinuria (Photo courtesy of Pexels)
Image: A new test could greatly improve quality of life for infants with homocystinuria (Photo courtesy of Pexels)

Homocystinuria (HCU) is a congenital disease that if left untreated could lead to severe complications. HCU affects an infant's ability to metabolize the amino acid methionine, which is an essential protein component found in breast milk. This leads to an abnormal increase in levels of methionine and another amino acid known as homocysteine, which, in turn, could cause complications ranging from skeletal and eye problems to intellectual disabilities and vascular abnormalities. Early detection and treatment of HCU can prevent these complications. However, current tests only gauge methionine levels, which remain low during newborn screening. Thus, around 50% of HCU cases remain unidentified, leaving them at high risk of going untreated.

Scientists at the Centers for Disease Control and Prevention (CDC, Atlanta, GA, USA) have developed a new test that could markedly enhance the quality of life for infants with HCU and also demonstrated its efficacy. In newborns with HCU, homocysteine levels exhibit an early, significant rise - generally before methionine levels - which makes it an ideal marker for detecting the disease during the first few days of life when screening is performed. This makes homocysteine a better early marker of HCU in infants.

The research team evaluated the performance of the test by using it to screen residual newborn screening specimens procured from infants who had already received HCU diagnoses. The specimens included 100 samples from healthy infants, 50 samples from HCU-negative infants receiving total parenteral nutrition (TPN) in the NICU, and two samples from HCU-positive infants. Impressively, the test effectively distinguished between healthy and HCU-positive samples. Additionally, the specimens procured from infants receiving TPN treatment were accurately classified as HCU-negative, which is crucial because traditional methionine tests for HCU tend to produce a high number of false positives in babies receiving TPN.

“Here we present the only flow injection analysis–tandem mass spectrometry first-tier newborn screening method that directly quantifies total homocysteine from dried blood spots,” said Konstantinos Petritis, Ph.D., at the CDC who led the group of researchers. “The ability to screen total homocysteine during first-tier newborn screening is a significant step toward reducing HCU false-negative rates, which will enable early identification and intervention to reduce HCU-associated morbidity and mortality.”

Related Links:
CDC 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more