We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Rapid Diagnostic Test Uses Light to Detect Malaria without Blood Samples

By LabMedica International staff writers
Posted on 09 Jan 2023
Print article
Image: Non-invasive malaria screening device uses light for diagnosis (Photo courtesy of Pexels)
Image: Non-invasive malaria screening device uses light for diagnosis (Photo courtesy of Pexels)

Rapid tests, which are easy to deploy and require minimal equipment, provide an important diagnostic tool in the ongoing effort against malaria, which affects more than 250 million people around the world annually. While the advent of these tests has greatly advanced diagnosis in regions where the disease is endemic, they still involve invasive blood draws from patients, which require skilled medical personnel and pose additional safety risks. Now, a team of scientists is developing an alternative: a rapid diagnostic test that uses light to diagnose the often deadly disease - no blood draws or finger pricks needed.

Current rapid malaria tests involve applying a blood sample to a testing strip that can detect the presence of malaria-causing plasmodium parasites in red blood cells. Such tests can be administered at the point of care and provide results in about 20 minutes, but also are inadequate for detection of asymptomatic infections where the level of parasites in blood is low. The team of scientists led by Johns Hopkins University (Baltimore, MD, USA) has improved on that model through the development of a hand-held screening device that can scan a patient’s arm or finger to detect the presence of malaria, eliminating the need to draw blood. Called ParaSpy Plus, the technology depends on an optical fiber probe that combines two spectroscopy modalities, label-free Raman spectroscopy and diffuse reflectance spectroscopy, or DRS, to noninvasively quantify malaria parasites in red blood cells.

Thanks to the fiber probe, Raman and DRS measurements are sequentially performed in vivo without sampling blood. When collected by the device, the measurements will then directly feed into artificial intelligence algorithms that can provide a quick and accurate diagnosis. The team plans to integrate its new sensing technology and AI software into a single portable screening device. And without any blood draws or sample preparation, the device can be used to screen for malaria outside of a clinical setting, such as in schools or community centers. The team expects that at the end of the three-year project period, the prototype will be ready for large-scale validation via clinical studies in different malaria-endemic regions. ParaSpy Plus will also be adaptable to the diagnosis and treatment of many other diseases, according to the team.

“With our proposed method, there are no invasive finger-pricks. Instead, we are working on a way to diagnose whether a person has malaria through non-invasive measurements using near-infrared light,” said team leader Ishan Barman, an associate professor of mechanical engineering in the Whiting School of Engineering. “The secondary goal of our work is to explore the capability of this platform for the diagnosis of diseases with high prevalence among the same populations, such as anemia and sickle cell disease.”

Related Links:
Johns Hopkins University 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more