We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Chromosome Instability Patterns Predict Tumor Drug Response

By LabMedica International staff writers
Posted on 16 Jun 2022
Print article
Image: Computer-generated three dimensional drawing of a chromosome mutation (Photo courtesy of 123rf.com)
Image: Computer-generated three dimensional drawing of a chromosome mutation (Photo courtesy of 123rf.com)

By analyzing the differences in the number of repetitions of sequences of DNA within cancerous tumors, genomic researchers characterized 17 different types of chromosomal instability, which could be used to predict tumor drug response and to aid in the identifying future drug targets.

Chromosomal instability (CIN) is a type of genomic instability in which chromosomes are unstable, such that either whole chromosomes or parts of chromosomes are duplicated or deleted. Chromosomal instability is a common feature of cancer, occurring in around 80% of tumors, researchers are only now beginning to understand exactly what types or patterns of instability are present in any given tumor.

To increase this understanding, investigators at the University of Cambridge (United Kingdom) and colleagues at the Spanish National Cancer Research Center (Madrid, Spain) evaluated the extent, diversity, and origin of CIN across 7,880 tumors representing 33 cancer types.

Results of this evaluation revealed 17 different types of chromosomal instability. These chromosomal instability signatures could be used to predict how tumors might respond to drugs, as well as aiding in the identification of future drug targets.

Senior author Dr. Florian Markowetz, senior group leader at the Cancer Research UK Cambridge Institute of the University of Cambridge, said, "The more complex the genetic changes that underlie a cancer, the more difficult they are to interpret and the more challenging it is to treat the tumor. This is tragically clear from the very low survival rates for cancers that arise as a result of chromosomal instability. Our discovery offers hope that we can turn things around, providing much more sophisticated and accurate treatments. We are now working hard to bring our technology to patients and develop it to a level where it can transform patients' lives."

The CIN study was published in the June 15, 2022, online edition of the journal Nature.

Related Links:
University of Cambridge 
Spanish National Cancer Research Center 

 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more