We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

A Device for Rapid and Accurate Diagnosis of Hepatitis C Infections

By LabMedica International staff writers
Posted on 07 Dec 2021
Print article
Image: Lateral flow detection of hepatitis C virus (HCV) using a novel LAMP assay (Photo courtesy of Nature Communications at www.nature.com)
Image: Lateral flow detection of hepatitis C virus (HCV) using a novel LAMP assay (Photo courtesy of Nature Communications at www.nature.com)
A device has been developed that enables the rapid and accurate diagnosis of hepatitis C infections under both laboratory and field conditions.

Hepatitis C virus (HCV) is a major cause of liver-related disease with more than 70 million people chronically infected globally. Recent advances in direct acting antiviral treatments have improved cure rates to better than 95%. However, currently an estimated 80% of all infected individuals are unaware of their status due to the asymptomatic nature of infection. Many of these patients will not be diagnosed until irreversible clinical damage, such as liver cirrhosis and hepatocellular carcinoma, occur - syndromes that contribute to the more than 400,000 HCV related deaths reported every year.

Currently, testing for HCV is hindered by high cost, long turnaround times, and high level of expertise needed in centralized diagnostic laboratories. To rectify this situation, investigators at the University of Glasgow (United Kingdom) developed a user-friendly, low-cost assay based on reverse transcriptase loop mediated isothermal amplification (RT-LAMP).

LAMP assays provide high sensitivity and specificity through the use of four to six primers, which target six to eight regions within a sequence of interest. The amplification reaction takes place at a constant temperature between 60–65 degrees Celsius, offering a cheaper alternative to the traditional PCR assays, with minimal equipment requirements.
The new device for HCV detection, which was adapted from a similar system that had been developed to deliver rapid malaria diagnosis, incorporated sheets of origami-like folded wax paper to prepare samples for LAMP amplification. The nature of the folded paper enabled the sample to be processed and delivered to three small chambers in a cartridge, which the LAMP machine heated and used to test the samples for the presence of hepatitis C RNA. The results were delivered in the form of an easy-to-read lateral flow strip with two bands for a positive result and one band for a negative.

The prototype device, with potential for point-of-care use, described in the current study comprised a LAMP amplification chamber and lateral flow nucleic acid detection strips, giving a visually-read, user-friendly result in less than 40 minutes.

To verify the performance of the prototype, the investigators analyzed 100 blood plasma samples from patients with chronic HCV infection and another 100 samples from a control group of HCV-negative patients. Results were compared to those obtained for the same samples using an Abbott (Abbott Park, IL, USA) RealTime hepatitis C assay. Results of the LAMP analyses were found to be in 98% agreement with those from the Abbott test.

Senior author Dr. Jonathan Cooper, professor of biomedical engineering at the University of Glasgow, said, “The World Health Organization has published guidelines for the kinds of rapid, accurate diagnostic tests which could help tackle infectious diseases around the world, including hepatitis C. Our malaria diagnosis system was a response to that call to action. While that tested patients' blood for the presence of the DNA of Plasmodium falciparum, the mosquito-borne parasitic species which causes malaria, we were confident that it could be adapted for other purposes.”

The rapid diagnostic device for diagnosis of hepatitis C infections was described in the November 30, 2021, online edition of the journal Nature Communications.

Related Links:
University of Glasgow
Abbott


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more