We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Disease Diagnosis Based on Infrared Analysis of Blood Samples

By LabMedica International staff writers
Posted on 30 Mar 2021
Print article
Image: Blood panels are as individual as fingerprints. Investigators have now demonstrated that this so-called molecular fingerprint of the blood is stable over time (Photo courtesy of Max Planck Institute of Quantum Optics)
Image: Blood panels are as individual as fingerprints. Investigators have now demonstrated that this so-called molecular fingerprint of the blood is stable over time (Photo courtesy of Max Planck Institute of Quantum Optics)
A novel, infrared spectroscopy-based approach detects the status of a person’s health by monitoring changes in the molecular composition of blood samples.

Changes in an individuals health are reflected in characteristic modifications to the molecular composition of biofluids. Detecting these modifications could contribute to the detection of various disease states.

Toward this end, investigators at the Ludwig Maximilian University of Munich (Garching, Germany) and colleagues at the Max Planck Institute of Quantum Optics (Garching, Germany) used Fourier-transform infrared spectroscopy (FTIR) to “fingerprint” blood serum and plasma samples from healthy, non-symptomatic individuals.

The intent of the study was to address questions that are fundamental for the applicability of infrared fingerprinting in health monitoring, which means that the stability of the molecular patterns in healthy persons over time must be firmly established.

Initially, the investigators tested whether infrared spectral fingerprints could be obtained from bulk liquid blood serum and plasma samples in a direct and reproducible fashion. Then, they determined the range of natural biological variation of infrared fingerprints from individual volunteers over time (within-person variation). In addition, they related the variation of the IMFs over time for any given individual to the degree of variability between different individuals (between-person variation) and to operational variabilities inherent to clinical practice.

For this study, the investigators used FITR to fingerprint blood serum and plasma samples from 31 healthy, non-symptomatic individuals, who were sampled up to 13 times over a period of seven weeks and again after six months. The measurements were performed directly on liquid serum and plasma samples, yielding a time- and cost-effective workflow with a high degree of reproducibility.

Results revealed that the infrared molecular fingerprint of each individual donor remained stable over periods ranging from a few days to weeks and months, and that each temporal profile could be readily attributed to the participant concerned. Furthermore, single measurements yielded a multiplicity of person-specific spectral markers, allowing individual molecular phenotypes to be detected and followed over time.

"This newly revealed temporal stability of blood-based infrared fingerprints provides a basis for future applications of minimally invasive infrared spectroscopy as a reliable method for the future of health monitoring," said senior author Dr. Mihaela Žigman, head of the broadband infrared diagnostics group in the department of laser physics at the Ludwig Maximilian University of Munich. "Practically speaking, following-up a person's health status regularly might become paramount for timely-detecting relevant deviations. In addition to its uses in the fields of health monitoring and preventive medicine, systems biology shall also benefit from the availability of the approach."

The FITR study was published in the March 8, 2021, online edition of the journal Nature Communications.

Related Links:
Ludwig Maximilian University of Munich
Max Planck Institute of Quantum Optics


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more