We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Analysis of Urinary Exosome RNA Can Diagnose Kidney Transplant Rejection

By LabMedica International staff writers
Posted on 15 Mar 2021
Print article
Image: Presence of lymphocytes within tubular epithelium is one of the pathological features of acute cellular rejection of a kidney transplant (Photo courtesy of Wikimedia Commons)
Image: Presence of lymphocytes within tubular epithelium is one of the pathological features of acute cellular rejection of a kidney transplant (Photo courtesy of Wikimedia Commons)
A panel of mRNA signatures derived from urinary exosomes was shown to be a powerful and noninvasive tool to screen for the body’s rejection of a kidney allograft (a transplant from a genetically non-identical donor).

The traditional biomarkers currently used to monitor a kidney allograft for rejection are late markers of injury and they lack sensitivity and specificity. Allograft biopsies on the other hand, are invasive and costly.

To improve this situation, investigators at Harvard Medical School (Boston, MA, USA) developed a noninvasive clinical test to accurately diagnose kidney allograft rejection. This test was based on the isolation of urinary exosomal mRNAs and the identification of rejection signatures on the basis of differential gene expression.

Exosomes contain the major fraction of mRNA in urine and consequently are an ideal target to probe for molecular biomarkers of kidney diseases. Exosomes are lipid-enclosed extracellular vesicles measuring 30–150 nanometers in diameter that are released by most cells in the body and play an important role in intercellular communication by carrying bioactive molecules (soluble proteins and nucleic acids such as mRNAs) to a target cell. Exosomes in urine are primarily released from renal epithelial cells derived from renal tubular structures and hold promise as one component of a noninvasive liquid biopsy for detecting molecular changes in distinct nephron regions even in the absence of disease. Their stability in urine makes them a potentially powerful tool for liquid biopsy and a noninvasive diagnostic biomarker for kidney-transplant rejection.

For this study, the investigators isolated exosomes from 175 urine samples obtained from patients who were already undergoing kidney biopsies. The investigators isolated protein and mRNA from these exosomes and identified a 15 gene rejection signature that could distinguish between normal kidney function and rejection. Furthermore, the investigators pinpointed five genes that could differentiate between cellular rejection and antibody-mediated rejection.

"These findings demonstrate that exosomes isolated from urine samples may be a viable biomarker for kidney transplant rejection," said senior author Dr. Jamil Azzi, associate professor of Medicine at Harvard Medical School. "Our goal is to develop better tools to monitor patients without performing unnecessary biopsies. We try to detect rejection early, so we can treat it before scarring develops. "If rejection is not treated, it can lead to scarring and complete kidney failure. Because of these problems, recipients can face life-long challenges."

The urinary exosome study was published in the March 3, 2021, online edition of the Journal of the American Society of Nephrology.

Related Links:
Harvard Medical School

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more