We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Elevated Plasma Levels of Glial Fibrillary Acidic Protein Indicate Increased Alzheimer’s Risk

By LabMedica International staff writers
Posted on 01 Mar 2021
Print article
Image: The HD-X Analyzer is the latest model of the fully automated Simoa bead-based immunoassay platform. (Photo courtesy of Quanterix)
Image: The HD-X Analyzer is the latest model of the fully automated Simoa bead-based immunoassay platform. (Photo courtesy of Quanterix)
A recent study has demonstrated that plasma levels of the protein GFAP (glial fibrillary acidic protein) are elevated in cognitively normal older adults at risk of developing Alzheimer’s disease.

GFAP is a protein in the cytoskeleton of brain astrocytes. Previous studies have shown that it can be measured in blood samples and is associated with Alzheimer’s disease (AD). However, plasma GFAP has not been investigated in cognitively normal older adults at risk of AD, based on brain amyloid-beta (Abeta) load.

In the current study, investigators at Edith Cowan University (Perth, Australia) compared plasma GFAP levels between cognitively normal older adults with low brain Abeta load (Abeta−) and cognitively normal older adults at risk of AD, due to high brain Abeta load, (Abeta+). They postulated that plasma GFAP levels would be higher in the Abeta+ group compared to the Abeta− group.

To confirm this hypothesis, the investigators used the Quanterix (Billerica, MA, USA) Simoa GFAP Discovery Kit on the ultra-sensitive Single molecule array (Simoa) platform (HDx instrument) to measure levels of GFAP, Abeta1–42, and Abeta1–40. Cross-sectional analyses were carried out for plasma GFAP and plasma Abeta1–42/Abeta1–40 ratio, a blood-based marker associated with brain Abeta load, in participants (65–90 years) categorized into low (Abeta−) and high (Abeta+) brain Abeta load groups via Abeta positron emission tomography (PET).

Results revealed that plasma GFAP levels were significantly higher, and plasma Abeta1–42/Abeta1–40 ratios were significantly lower, in Aβ+ participants compared to Aβ− participants. This finding demonstrated that plasma GFAP levels were elevated in cognitively normal older adults at risk of AD. Furthermore, these observations suggested that astrocytic damage or activation began from the pre-symptomatic stage of AD and was associated with brain Abeta load.

"Blood biomarkers are becoming an exciting alternative to the existing expensive and invasive methods of diagnosing Alzheimer's disease," said senior author Dr. Ralph N. Martins, professor of aging & Alzheimers disease at Edith Cowan University. "The GFAP biomarker could be used to develop a simple and quick blood test to detect if a person is at very high risk of developing Alzheimer's. Early diagnosis is critical to allow us to implement medication and lifestyle interventions that can help delay the progression of the disease and give people more time before symptoms develop."

The study was published in the January 11, 2021, online edition of the journal Translational Psychiatry.

Related Links:
Edith Cowan University
Quanterix


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more