We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Sensitive Detection Method Identifies Protein Clumps in Parkinson’s Disease Skin Samples

By LabMedica International staff writers
Posted on 02 Nov 2020
Print article
Image: A structural model of human alpha-synuclein protein (Photo courtesy of Wikimedia Commons)
Image: A structural model of human alpha-synuclein protein (Photo courtesy of Wikimedia Commons)
A sensitive detection method usually used to identify aggregated prion proteins has been adapted for the diagnosis of Parkinson's disease in skin samples.

An unmet clinical need in Parkinson's disease (PD) has been the identification of biomarkers for diagnosis, preferably in easily accessible tissues such as skin. In this regard previous immunohistochemical studies have detected pathological clumping of alpha‐synuclein (aSyn) protein in skin biopsies from PD patients.

To identify aSyn aggregates in skin samples, investigators at Iowa State University (Ames, USA) used a real‐time quaking‐induced conversion assay. Real-time quaking-induced conversion (RT-QuIC) is a highly sensitive assay generally used for prion detection. The "quaking" in the name of the technique refers to the fact that samples in the RT-QuIC assay are literally subjected to shaking. This action breaks apart aggregates of prion protein (PrP) that are then further incubated, amplifying the amount of misfolded PrP to detectable levels.

The investigators adapted the RT-QuIC assay to determine the seeding kinetics of the aSyn present in the skin from autopsied subjects consisting of frozen skin tissues from 25 PD and 25 controls and formalin‐fixed paraffin‐embedded skin sections from 12 PD and 12 controls.

Results of the analysis revealed that the assay had correctly identified 24/25 PD and 24/25 controls using frozen skin tissues (96% sensitivity and 96% specificity) compared to 9/12 PD and 10/12 controls using formalin‐fixed paraffin‐embedded skin sections (75% sensitivity and 83% specificity). These results clearly demonstrated the feasibility of using skin tissues for clinical diagnosis of PD by detecting pathological aSyn.

"Since there is no easy and reliable test available for the early diagnosis of Parkinson's disease at present, we think there will be a lot interest in the potential use of skin samples for diagnosis," said senior author Dr. Anumantha Kanthasamy, professor of biomedical sciences at Iowa State University. "Testing skin samples could lead to earlier detection of Parkinson's disease. Earlier diagnosis could allow physicians to test therapeutic strategies designed to slow or prevent the development of advanced symptoms."

The skin test paper was published in the September 22, 2020, online edition of the journal Movement Disorders.

Related Links:
Iowa State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more