We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Smartphone Microscopic Method Detects Cryptosporidium and Giardia

By LabMedica International staff writers
Posted on 30 Sep 2020
Print article
Image: Cryptosporidium oocysts and the larger Giardia cysts stained by Crypto/Giardia IFA kit (Photo courtesy of Cellabs).
Image: Cryptosporidium oocysts and the larger Giardia cysts stained by Crypto/Giardia IFA kit (Photo courtesy of Cellabs).
Food and water-borne illness arising from the consumption of contaminated food and water are serious health hazards globally. Cryptosporidium and Giardia are the major food and water‒borne parasites. The infection occurs mainly by (oo)cyst phase of the parasites.

Several highly sensitive and specific methods have been described to detect Giardia cyst and Cryptosporidium oocyst in food, water, and fecal samples. Commonly used approaches are polymerase chain reaction, flow cytometry, and optical microscopic examination. However, these techniques need a good laboratory facility, well trained user and are expensive.

Scientists at the Kathmandu Institute of Applied Sciences (Kathmandu, Nepal) developed a smartphone based microscopic assay method to screen (oo)cysts of Cryptosporidium and Giardia contamination of vegetable and water samples. The method consisting of a ball lens of 1 mm diameter, white LED as illumination source and Lugols's iodine staining provided magnification and contrast capable of distinguishing (oo)cysts of Cryptosporidium and Giardia. The analytical performance of the method was tested by spike recovery studies.

Ten microliters of concentrated sample were stained with 10 μL of diluted Lugol's iodine (1:2 in water) and subsequently loaded into hemocytometer. The sample was incubated for six minutes. The (oo)cysts were screened and enumerated in four quadrants of the hemocytometer under smartphone microscope. The cysts on the same hemocytometer were simultaneously counted by Trinocular brightfield microscope (Amscope, Irvine, CA, USA). Triplicate measurement was made for each concentrated suspension. The spiked samples were also examined with a fluorescent microscope (Labomed Inc, Los Angeles, CA, USA).

The team tested the smartphone microscope system for detecting (oo)cysts on seven types of vegetable (n = 196) and river water (n = 18) samples. They reported that 42% vegetable and 39% water samples were found to be contaminated with Cryptosporidium oocyst. Similarly, 31% vegetable and 33% water samples were contaminated with Giardia cyst. The recovery of Giardia ranged from 10.2 ± 4.0% in cabbage to 37.6 ± 2.4% in water and recovery of Cryptosporidium ranged from 26.8 ± 10.3% in cabbage to 49.2 ± 10.9% in tomato using smartphone microscope measurement.

The authors concluded that the smartphone based microscopic assay can be a low-cost alternative for screening of (oo)cyst of Cryptosporidium and Giardia in resource limited settings. The approximate cost of the microscope (excluding the cost of smartphone) is ~ USD 15. This method also has the potential to be used in clinical settings. The study was published on September 8, 2020 in the journal PLOS Neglected Tropical Diseases.

Related Links:
Kathmandu Institute of Applied Sciences
Amscope
Labomed Inc


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more