We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Endometrium Undergoes Gene Expression Shifts During Menstrual Cycle

By LabMedica International staff writers
Posted on 29 Sep 2020
Print article
Image: The Chromium Controller rapidly and efficiently combines large partition numbers with a massively diverse barcode library to generate >100,000 barcode-containing partitions in a matter of minutes. (Photo courtesy of 10x Genomics)
Image: The Chromium Controller rapidly and efficiently combines large partition numbers with a massively diverse barcode library to generate >100,000 barcode-containing partitions in a matter of minutes. (Photo courtesy of 10x Genomics)
In a human menstrual cycle the endometrium undergoes remodeling, shedding and regeneration, all of which are driven by substantial gene expression changes in the underlying cellular hierarchy.

Despite its importance in human fertility and regenerative biology, our understanding of this unique type of tissue homeostasis remains rudimentary A new single-cell transcriptomic study has shown that the window during which human embryos can implant into the endometrium opens with an abrupt change in gene expression of endometrial cells.

A team of bioengineers at Stanford University (Stanford, CA, USA) and their colleagues obtained endometrial biopsies from 19 healthy individuals between four and 27 days after the start of their last menstrual period. They captured single cells for RNA-seq analysis using Fluidigm C1 medium chips (South San Francisco, CA, USA) and, to validate their findings, processed additional samples from 10 other healthy individuals using the 10x Chromium system (10x Genomics, Pleasanton, CA, USA).

The scientists reported that an analysis of the genes and markers expressed by the endometrial cells pointed to the presence of six cell types, four of which, stromal fibroblasts, endothelium, macrophages, and lymphocytes, could readily be identified. The two other cell types both expressed epithelium-linked markers as well as other genes, leading the investigators to characterize one cell type as 'ciliated epithelium' and the other as 'unciliated epithelium.'

The team also examined the transcriptomes of endometrial cells over time to uncover four major phases of endometrial transformation. For instance, the global transcriptome of unciliated epithelial cells was fairly consistent from phase one through phase three, but it changed abruptly with the start of phase four. At that time, those cells began to express genes like PAEP, GPX3, and CXCL14, whose expression has previously been linked to the window of implantation (WOI).

At the same time, stromal fibroblasts upregulated genes like DKK1 and CRYAB during phase four, as well as the decidualization-initiating transcription factor FOXO1 and the decidualization stromal marker IL5. The change in gene expression among stromal fibroblasts upon entering the WOI was not quite as abrupt as it was among the epithelial cells. The WOI closes gradually and one group of genes, marked by PAEP and GPX3, are expressed throughout phase four and into phase one of the next cycle, while another group of genes that include CXC14, MAOA, and DPP4 decline in expression toward the end of phase four.

The authors concluded that their study provided a high-resolution molecular and cellular characterization of human endometrial transformation across the menstrual cycle, providing insights into this essential physiological process. The study was published on September 14, 2020 in the journal Nature Medicine.

Related Links:
Stanford University
Fluidigm
10x Genomics


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more