We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Plasma Lipidome Investigated in Hereditary Hemochromatosis

By LabMedica International staff writers
Posted on 28 Jul 2020
Print article
Image: Micro Mass Quattro Premier Mass Spectrometer (Photo courtesy of University of Massachusetts Amherst).
Image: Micro Mass Quattro Premier Mass Spectrometer (Photo courtesy of University of Massachusetts Amherst).
Hereditary hemochromatosis (HH) is an autosomal recessive genetic disorder with increased intestinal iron absorption which leads to iron overload and consequently to tissue damage and functional impairment of organs like liver, pancreas, and heart.

In humans iron overload causes elevated triglycerides. Genetic predisposition for HH is associated with primary hypertriglyceridemia. Hypertriglyceridemia was found in almost a third of subjects with HH which was significantly decreased by phlebotomies, whereas in non-HH subjects with hyperferritinemia and hypertriglyceridemia repeated phlebotomies did not reduce triglyceride concentrations.

Gastroenterologists at the University Hospital Heidelberg (Heidelberg, Germany) conducted a cohort study of 54 subjects with HH and 20 healthy subjects. Patients were analyzed for their iron status including iron, ferritin, transferrin and transferrin saturation and serum lipid profile on a routine follow-up examination. Diagnosis of HH was done by genetic analysis (C282Y) in the hospital central laboratory according to standard methods.

Serum samples were subjected to lipid extraction according to Folch methods. The levels of phospho- and sphingolipids in lipid extracts were determined with a triple-quadrupole Micro Mass Quattro Premier mass spectrometer coupled with a liquid-chromatography system (Waters, Milford, MA, USA). The following polar lipids (phospho- and sphingolipids) were measured: phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylinositol (PI), phosphatidylserine, phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), and sphingomyelin (SM).

The scientists reported that the HH group showed significantly lower serum phosphatidylcholine (PC) and significantly higher phosphatidylethanolamine (PE) compared to healthy control group. The ratio of PC/PE was clearly lower in HH group indicating a shift from PC to PE. Triglycerides were significantly higher in HH group. No differences were seen for HDL, LDL and cholesterol. Hepatic steatosis was significantly more frequent in HH. PNPLA3 polymorphism (CC versus CG/GG) did not reveal any significant correlation with iron and lipid parameters including neutral and polar lipids, grade of steatosis and fibrosis.

The authors concluded that their study strengthens the hypothesis of altered lipid metabolism in HH and susceptibility to nonalcoholic fatty liver disease. Disturbed phospholipid metabolism may represent an important factor in pathogenesis of hepatic steatosis in HH. The study was published on July 17, 2020 in the journal BMC Gastroenterology.

Related Links:
University Hospital Heidelberg
Waters


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more