We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Serum Mir‐22 Prognostic Marker Explored for Acute Myeloid Leukemia

By LabMedica International staff writers
Posted on 25 Jun 2020
Print article
Image: The NanoDrop 2000 and 2000c are full-spectrum, UV-Vis spectrophotometers used to quantify and assess purity of DNA, RNA, Protein and more (Photo courtesy of Thermo Fisher Scientific).
Image: The NanoDrop 2000 and 2000c are full-spectrum, UV-Vis spectrophotometers used to quantify and assess purity of DNA, RNA, Protein and more (Photo courtesy of Thermo Fisher Scientific).
Acute myeloid leukemia (AML) is an aggressive hematopoietic stem cell malignancy that is characterized by the clonal proliferation of myeloid precursors. Abnormal accumulation of leukemic blasts in the bone marrow, blood, and other tissues results in significant reductions of normal blood cells.

MicroRNAs (miRNAs) are small (19‐25 nucleotide), noncoding RNAs that control the gene expression at the post‐transcriptional level, leading to target mRNAs degradation or translational inhibition. Increasing evidence has demonstrated that miRNA dysregulation is associated with the initiation and progression of cancer.

Scientists at the Panyu Central Hospital (Guangzhou, China) enrolled a total of 124 patients with newly diagnosed AML and 60 healthy individuals as controls in a study. Serum samples were collected and stored. Total RNA was isolated from serum with the miRNeasy Serum/Plasma kit (Qiagen, Hilden, Germany). The RNA concentration was measured with a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

Cel‐miR‐39 was used as the spiked‐in control. The cDNA was reverse‐transcribed from total RNA using the TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). The amplification of cDNAs was performed on the Applied Biosystems 7500 Real‐Time PCR system. The relative serum miR‐22 expression levels were normalized to cel‐miR‐39 and calculated by the 2–ΔΔC t method.

The investigators reported that the serum miR‐22 expression was significantly downregulated in AML subjects compared to healthy controls. Serum miR‐22 levels were lowest in AML patients with M4/M5 subtypes, and low serum miR‐22 expression occurred more frequently in AML patients with higher white blood cell counts or poor cytogenetic risk. Receiver operating characteristic (ROC) analysis revealed that serum miR‐22 well differentiated AML cases from healthy controls. In addition, serum miR‐22 downregulation was closely associated with worse clinical features and shorter survival. Low serum miR‐22 expression was confirmed to be an independent predictor for overall survival and relapse‐free survival in AML patients. Moreover, the expression level of serum miR‐22 was dramatically increased following treatment. In addition, serum miR‐22 levels were significantly higher in AML patients achieving complete remission (CR) than those without CR.

The authors concluded they had demonstrated that the serum miR‐22 expression is markedly downregulated in AML. In addition, downregulation of serum miR‐22 is significantly associated with aggressive clinical variables and poor prognosis of AML. Therefore, serum miR‐22 might serve as a promising prognostic biomarker for AML. The study was published on June 12, 2020 in the Journal of Clinical Laboratory Analysis.



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more