We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Urinary Metabolite GWAS Leads to Biomarkers of Kidney Disease

By LabMedica International staff writers
Posted on 04 Feb 2020
Print article
Image: Histopathology of kidney disease: showing completely sclerotic glomeruli and severe chronic tubulointerstitial nephritis (Photo courtesy of Jian-Hua Qiao, MD, FCAP).
Image: Histopathology of kidney disease: showing completely sclerotic glomeruli and severe chronic tubulointerstitial nephritis (Photo courtesy of Jian-Hua Qiao, MD, FCAP).
The kidneys integrate information from continuous systemic processes related to the absorption, distribution, metabolism and excretion (ADME) of metabolites. Scientists have identified ties between urine metabolite levels and common genetic variants, laying the foundation for a more refined view of human metabolic processes and the tissues in which they take place.

Prior studies suggest that tissues from several key organs, from the liver and kidneys to the blood and intestinal tract, have a part to play in different aspects of ADME. It is suspected that there might be much more to learn about metabolism by testing urine samples in individuals with lower-than-usual metabolite detoxification and transport in the kidney's proximal tubules due to existing kidney conditions.

Scientists from the University of Freiburg (Freiburg, Germany) performed a genome-wide association study (GWAS) involving 1,627 individuals with diminished kidney function, searching for genetic loci coinciding with urine metabolite concentrations. Included in the study were urinary concentrations of 1,172 metabolites. The metabolic GWAS (mGWAS) led to 240 loci with apparent ties to urine metabolite concentrations, while their follow-up fine-mapping and single-cell expression analyses helped focus in on potential disease-causing genes, the cell types involved, and the urinary metabolites that may flag genetic predisposition to kidney disease.

The 240 unique metabolite–locus associations (metabolite quantitative trait loci, mQTLs) that were identified and replicated highlight novel candidate substrates for transport proteins. The identified genes are enriched in ADME-relevant tissues and cell types, and they reveal novel candidates for biotransformation and detoxification reactions. Fine mapping of mQTLs and integration with single-cell gene expression permitted the prioritization of causal genes, functional variants and target cell types. The combination of mQTLs with genetic and health information from 450,000 UK Biobank participants illuminated metabolic mediators, and hence, novel urinary biomarkers of disease risk.

The authors concluded that this comprehensive resource of genetic targets and their substrates is informative for ADME processes in humans and is relevant to basic science, clinical medicine and pharmaceutical studies. The study was published on January 20, 2020 in the journal Nature Genetics.

Related Links:
University of Freiburg

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more