We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Molecular Profiles, Microenvironment Signatures May Improve Lymphoma Prognosis

By LabMedica International staff writers
Posted on 09 Jan 2020
Print article
Image: Micrograph of a diffuse large B cell lymphoma, from a bone marrow aspirate; the nucleus may be convoluted and irregular (Photo courtesy of Peter Maslak)
Image: Micrograph of a diffuse large B cell lymphoma, from a bone marrow aspirate; the nucleus may be convoluted and irregular (Photo courtesy of Peter Maslak)
The tumor microenvironment includes surrounding blood vessels, immune cells, fibroblasts, signaling molecules, and the extracellular matrix that encapsulate the cancerous cells. The non-lymphoma cells lingering in the tumor's microenvironment, for example, can modify the effect of the mutations.

Although gene alterations driving a tumor provide information about cancer cell aggressiveness, non-malignant cells of the tumor microenvironment have the potential to promote malignant growth by supporting immune evasion and enabling the development of new blood vessels. In the past few years, scientists have profiled the genomes of lymphomas, defined mutations that confer good and bad prognoses, and found several clinically actionable mutations.

Scientists at Weill Cornell Medicine (New York, NY, USA) and their colleagues at BostonGene Corporation (Boston, MA, USA) developed and deconvoluted transcriptomics signatures of lymphoma microenvironment (LME) cells and pathways from 3,026 diffuse large B-cell lymphomas (DLBCLs) from 13 datasets including a new cohort of 127 patients. Mutations were available for 562 patients of the datasets and for 22 patients from that cohort (whole-exome sequencing with matched normal). Applying density-based clustering they identified four LME signatures, independent of reported transcriptional and genetic classifications based on lymphoma cells.

The team applied density-based clustering to identify four lymphoma microenvironment signatures that provided prognostic information beyond what could be gleaned from just lymphoma cell transcriptomes and mutations. Two of the signatures, named "immunosuppressive" and "mesenchymal," were associated with making tumor mutations behave better, and the other two, called "anti-tumor immunity" and "depleted," were associated with making mutations behave worse.

When patients have a tumor mutation associated with poor prognosis in a good tumor microenvironment, that mutation may not be that bad, they showed. Conversely, when patients have a tumor mutation that usually indicates a good prognosis but it is in a bad microenvironment, that mutation can be detrimental. For example, double-hit (DH) lymphomas are well-known subgroups that harbor both BCL2 and MYC gene translocations. Considering the genetics alone, this subgroup is usually associated with a bad prognosis. However, when DH lymphomas exhibit a microenvironment subtype with a good prognosis, the prognosis of these DH lymphoma patients is usually improved.

Leandro Cerchietti, MD, an Oncologist and first author of the study, said, “We classified the tumors, we considered new categories that were not considered before to increase the precision of the diagnosis. It also offers the possibility of doing more precise clinical trials now that we have this information available for the patients.” The study was presented on December 9, 2019 at the American Society of Hematology annual meeting held in Orlando, FL, USA.

Related Links:
Weill Cornell Medicine
BostonGene Corporation


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more