We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mutations Linked to Familial Pancreatic Cancer Identified

By LabMedica International staff writers
Posted on 28 Aug 2019
Print article
Image: A histopathology of pancreatic cancer; Scientists studying a highly cancer-prone family have identified a rare, inherited gene mutation that dramatically raises the lifetime risk of pancreatic and other cancers (Photo courtesy of the Dana-Farber Cancer Institute).
Image: A histopathology of pancreatic cancer; Scientists studying a highly cancer-prone family have identified a rare, inherited gene mutation that dramatically raises the lifetime risk of pancreatic and other cancers (Photo courtesy of the Dana-Farber Cancer Institute).
Pancreatic ductal adenocarcinoma is an aggressive cancer with limited treatment options. Approximately 10% of cases exhibit familial predisposition, but causative genes are not known in most families.

Pancreatic cancer is one of the deadliest cancers with limited treatment options. It typically comes with an especially poor prognosis due to its lack of symptoms until advanced stages and its ability to resist many anticancer therapies. Identifying genes involved in its development may lead to earlier diagnoses and improved treatments.

A team of scientists working with the Massachusetts General Hospital (Boston, MA, USA) performed whole-genome sequence analysis in a family with multiple cases of pancreatic ductal adenocarcinoma and identify a germline truncating mutation in the member of the RAS oncogene family-like 3 (RABL3) gene. Transcriptomic and mass spectrometry approaches implicate RABL3 in RAS pathway regulation and identify an interaction with RAP1GDS1 (SmgGDS), a chaperone regulating prenylation of RAS GTPases.

The truncated mutant RABL3 protein accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Finally, evidence in patient cohorts with developmental disorders implicates germline RABL3 mutations in RASopathy syndromes. The studies identified RABL3 mutations as a target for genetic testing in cancer families and uncover a mechanism for dysregulated RAS activity in development and cancer.

Sahar Nissim, MD, PhD, a cancer geneticist and gastroenterologist and lead author of the study, said, “More broadly, this work highlights the power of studying and understanding rare family syndromes: from just one family, we may gain precious clues to why pancreatic cancer happens, how we may prevent it or catch it earlier, and how we may treat it more effectively.” The study was published on August 12, 2019, in the journal Nature Genetics.

Related Links:
Massachusetts General Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more