We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

С помощью жидкостной 3D-печати удалось создать новые флюидные наноустройства

By LabMedica International staff writers
Posted on 10 May 2019
Print article
Совокупность компонентов струйного устройства для трехмерной печати: две жидкости, одна из которых содержит наноразмерные частицы глины, а другая - полимерные частицы, печатаются на подложке, после собираются вместе на границе раздела двух жидкостей и в течение миллисекунд образуют очень тонкий канал или трубку диаметром около одного миллиметра. Фото предоставлено Национальной лабораторией Лоуренса Беркли.
Совокупность компонентов струйного устройства для трехмерной печати: две жидкости, одна из которых содержит наноразмерные частицы глины, а другая - полимерные частицы, печатаются на подложке, после собираются вместе на границе раздела двух жидкостей и в течение миллисекунд образуют очень тонкий канал или трубку диаметром около одного миллиметра. Фото предоставлено Национальной лабораторией Лоуренса Беркли.
Исследователи применили новый метод трехмерной (3D) печати для создания флюидного устройства, которое может быть использовано для выполнения широкого спектра задач, от изготовления материалов для элементов питания до скрининга потенциальных лекарственных средств.

Системы включают в себя несмешивающиеся жидкости, удерживаемые в неравновесных формах с помощью разделяющей компоновки и сжатия поверхностно-активных веществ в виде наночастиц-полимеров, которые обладают значительным потенциалом для катализа, химического разделения, накопления энергии и конверсии. Однако управление пространственной функциональностью внутри них и сопряжение процессов на обоих этапах остаются проблемой.

Исследователи из Национальной лаборатории Лоуренса Беркли (Калифорния, США) использовали поверхностно-активные вещества полимерной наноглины на границе раздела нефть-вода для получения полупроницаемой мембраны между жидкостями. Каналы потока были изготовлены с использованием микроструктурированной двумерной подложки и трехмерной жидкостной печати. Анионные стенки аппарата были функционализированы катионными мелкими молекулами, ферментами и коллоидными нанокристаллическими катализаторами. Трехмерная печать использовалась для построения мостов между каналами, соединяя их таким образом, чтобы проходящее через них химическое вещество встречало катализаторы в определенном порядке, вызывая каскад реакций для получения конкретных химических соединений.

В онлайн-выпуске журнала Nature Communications от 6 марта 2019 года исследователи сообщили, что в каналах под потоком могут выполняться многоступенчатые химические трансформации, а также осуществляться селективный массовый транспорт через границу жидкость-жидкость для линейных разделений. В конечном счете, все эти жидкостные системы уже автоматизированы с помощью насосов, детекторов и систем управления, далее предстоит лишь раскрыть их потенциал к химической логике и машинному обучению.

“Мы продемонстрировали замечательную вещь. Наше трехмерное печатное устройство может быть запрограммировано на проведение многоступенчатых сложных химических реакций по требованию, — сказал старший автор доктор Бретт Хелмс (Brett Helms), научный сотрудник Национальной лаборатории Лоуренса Беркли. — Ещё более удивительно то, что эта универсальная платформа может быть реконфигурирована для эффективного и точного комбинирования молекул для формирования специфических продуктов, таких как органические материалы для элементов питания. Форма и функции этих устройств ограничены только изобретательностью исследователя. Автономный синтез является интересной, перспективной областью для химической промышленности, и наша технология для устройств трехмерной печати способна помочь заложить основы в этой сфере”.

Ссылки по теме:
Lawrence Berkeley National Laboratory

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more