We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Liquid Biopsy Utility Reinforced in Early Cancer Trials Results

By LabMedica International staff writers
Posted on 09 May 2019
Print article
Image: The SureSelect XT combines sequencing library preparation and gDNA preparative reagents with the SureSelect target enrichment system (Photo courtesy of Agilent Technologies).
Image: The SureSelect XT combines sequencing library preparation and gDNA preparative reagents with the SureSelect target enrichment system (Photo courtesy of Agilent Technologies).
Next-generation sequencing (NGS) of circulating tumor DNA (ctDNA) supports blood-based genomic profiling but is not yet routinely implemented in the setting of a clinical phase I trials.

TARGET (Tumor chARacterisation to Guide Experimental Targeted therapy) is a molecular profiling program with the primary aim to match patients with a broad range of advanced cancers to early phase clinical trials on the basis of analysis of both somatic mutations and copy number alterations (CNA) across a 641 cancer-associated-gene panel in a single ctDNA assay.

For the analysis of the first 100 patients, investigators led by those at the University of Manchester (Manchester, UK) first designed and optimized a 641-gene liquid biopsy panel using Agilent SureSelect technology. Sequenced subjects were spread over 22 tumor types, with a median age of 56 years and a median of two prior lines of therapy. The team reported that they generated ctDNA NGS data successfully in 99% of patients, compared with tumor tissue sequencing, which only worked in 95%.

The group reported that 69 non-synonymous mutations were identified in tumor tissue from 54 patients overall. Analysis of corresponding ctDNA NGS data revealed good concordance, with 54 of 69 alterations (78%) also detected in plasma. Investigators applied a 2.5% variant allele frequency (VAF) threshold for liquid biopsy variant calling, and even with this relatively high cutoff, the assay was able to identify actionable mutations in the blood of 41 of 100 patients, 11 of whom received a matched therapy. Using the 2.5% cutoff, the team saw a 75% concordance (70 of 94 cases) between ctDNA and tissue results in patients with both tumor and ctDNA data.

Among the 24 discordance cases, 20 had tumor tissue mutations that were not recapitulated in the liquid biopsy sequencing. Of these, nine were actually present in sequence reads, but fell below the VAF cutoff. Four additional individuals had ctDNA mutations that were not represented in corresponding tissue sequencing. Some of these mismatches could be ascribed to either a biological or clinical consequence.

Caroline Dive, PhD, CBE, a professor and lead author of the study, said, “Now that we have demonstrated the feasibility of matching clinical trials for patients who have not responded to previous treatments by analyzing the tumor DNA in their blood, we are working to improve our blood testing approach. We are making the test more sensitive and adding new elements to it in order to understand more about a patient's disease. We are also taking several blood samples over time to see if a faulty gene is disappearing with treatment, or if there is emergence of a new genetic fault that could lead to treatment resistance. This would allow us to stop a failing treatment and consider new options to stay a step ahead of the disease.” The study was published on April 22, 2019, in the journal Nature Medicine.

Related Links:
University of Manchester

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more