We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Mutation Causes Rare Immune Disorder

By LabMedica International staff writers
Posted on 12 Jul 2017
Print article
Image: This light microscope image shows the gut tissue of a child with CHAPLE disease. The large white areas in the bottom right corner are enlarged lymphatic vessels, which can contribute to intestinal distress (Photo courtesy of the US National Institute of Allergy and Infectious Diseases).
Image: This light microscope image shows the gut tissue of a child with CHAPLE disease. The large white areas in the bottom right corner are enlarged lymphatic vessels, which can contribute to intestinal distress (Photo courtesy of the US National Institute of Allergy and Infectious Diseases).
A genetic cause and potential treatment strategy for a rare immune disorder called CHAPLE disease has been discovered and children with the condition can experience severe gastrointestinal distress and deep vein blood clots.

Genetic studies have contributed to the understanding of gastrointestinal diseases, associating at least 64 genes with early-onset or very-early-onset inflammatory bowel disease. Deleterious gene variants affect the intestinal epithelial barrier, phagocytosis processes, immune regulation, and inflammation.

A large team of international scientists led by those at the US National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA) enrolled 10 patients with CHAPLE disease that were based in Turkey and one who was based in the Netherlands, along with their healthy parents and siblings when available. The 11 patients were from eight families, all of whom were of Moroccan, Syrian, or Turkish ancestry. The ages of the patients ranged from three to 23 years as of February 2017. CHAPLE disease is a form of primary intestinal lymphangiectasia (PIL), also known as Waldmann’s disease.

Genomic DNA (gDNA) was obtained from probands and family members by isolation and purification from peripheral blood mononuclear cells (PBMCs) and submitted for Whole Exome Sequencing (WES) or targeting sequencing of the CD55 gene coupled with massively parallel sequencing by HiSeq Sequencing System. The scientists used a variety of techniques including flow cytometry, quantitative real-time polymerase reaction, Western blotting and T cell stimulation and cytokine secretion analysis.

The team found homozygous loss-of-function mutations in the gene encoding CD55 (decay-accelerating factor), which lead to loss of protein expression. Patients’ T lymphocytes showed increased complement activation causing surface deposition of complement and the generation of soluble C5a. Costimulatory function and cytokine modulation by CD55 were defective. Genetic reconstitution of CD55 or treatment with a complement-inhibitory therapeutic antibody reversed abnormal complement activation.

The team found that in CHAPLE disease, uninhibited complement resulting from a lack of CD55 protein damaged blood and lymph vessels along the lower digestive tract, leading to the loss of protective immune proteins and blood cells. In many patients, this process caused a range of symptoms, such as abdominal pain, bloody diarrhea, vomiting, problems absorbing nutrients, slow growth, swelling in the legs, recurrent lung infections, and blood clots.

The authors concluded that CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and protein-losing enteropathy (the CHAPLE syndrome) is caused by abnormal complement activation due to biallelic loss-of-function mutations in the CD55 gene. The study was published on June 28, 2017, in the New England Journal of Medicine.

Related Links:
US National Institute of Allergy and Infectious Diseases

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more