We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Lab Tests Discriminate Bacterial from Nonbacterial COPD Exacerbations

By LabMedica International staff writers
Posted on 08 Dec 2016
The discrimination of bacterial from nonbacterial acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is difficult, causing antibiotics overuse and bacterial resistance. Sputum cultures are of limited use because results take time.

Acute exacerbation of COPD also known as acute exacerbations of chronic bronchitis (AECB) is a sudden worsening of COPD symptoms such as shortness of breath, quantity and color of phlegm that typically lasts for several days. It may be triggered by an infection with bacteria or viruses or by environmental pollutants.

Image: The UniCel DxH 800 Coulter Cellular Analysis System (Photo courtesy of Beckman Coulter).
Image: The UniCel DxH 800 Coulter Cellular Analysis System (Photo courtesy of Beckman Coulter).

Scientists at the Franciscus Gasthuis (Rotterdam, The Netherlands) and their colleagues usually evaluate AECOPD using the laboratory parameters of leucocytes concentration and C-reactive protein. They have now evaluated additional tests to discriminate bacterial versus nonbacterial AECOPD: 5-part leukocyte differentiation (hematology analyzer), leukocyte differentiation using flow cytometry (Leukoflow, Cytodiff: Beckman Coulter, Brea, CA, USA), Leuko64 kit, and procalcitonin. Retrospectively, patients were classified as bacterial or nonbacterial AECOPD. Receiver operating characteristic (ROC) analyses tested how the additional tests discriminate these groups.

The team classified 22 AECOPD as bacterial and 23 as nonbacterial. From the additional tests, basophil percentage (Cytodiff) has superior AUC (0.800). At a cutoff resulting in equal to or more than 90% sensitivity, neutrophil/lymphocyte ratio (AUC: 0.755) and CD4-positive T cells (Leukoflow, AUC: 0.747) have the highest specificity (57%). Both neutrophil mean volume and standard deviation measured by the Cell Population Data from a Beckman Coulter DxH800 hematology analyzer had good combined sensitivity and specificity (91% sensitivity, 69% specificity). Addition of leukocyte populations and procalcitonin to CRP in regression models (AUC: 0.907/0.876/0.890) increased specificity compared to CRP alone (71% or 73% versus 39%).

The authors concluded that no additional test has sufficient accuracy on its own to predict bacterial AECOPD. Combining CRP with several parameters from the additional tests may improve this. The study was published in the December 2016 issue of the International Journal of Laboratory Hematology.

Related Links:
Franciscus Gasthuis
Beckman Coulter

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Latest Hematology News

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

First 4-in-1 Nucleic Acid Test for Arbovirus Screening to Reduce Risk of Transfusion-Transmitted Infections

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy