We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Parkinson's Disease Risk Indicators Found in Diverse Tissues

By LabMedica International staff writers
Posted on 18 Aug 2016
Tiny changes in DNA that have been linked to Parkinson's disease, the second most common neurodegenerative disorder after Alzheimer's, were found not only in brain cells, where they were expected, but also in liver, fat, immune and developmental cells.

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting about 1% of those over the age of 60 and classically, PD was considered a movement disorder with akinesia, rigidity, tremor and postural instability as the predominant motor features.

Image: Different colored dots represent the status of micro RNA in the blood. Researchers looked for similarities among blood samples from Parkinson\'s patients (Photo courtesy of Van Andel Research Institute).
Image: Different colored dots represent the status of micro RNA in the blood. Researchers looked for similarities among blood samples from Parkinson\'s patients (Photo courtesy of Van Andel Research Institute).

Scientists at the Van Andel Research Institute (Grand Rapids, MI, USA) and their collaborators investigated single-nucleotide polymorphisms SNPS) which were integrated with comprehensive data from the Roadmap Epigenomics Mapping Consortium (REMC) for 77 tissues and cell types and 1000 genomes using FunciSNP software.

The team found 12 loci across several tissue types that were particularly enriched or full of SNPS indicating an increase in risk. Only one locus was identified in the substantia nigra, the part of the brain where dopamine-producing neurons die. Other loci were found in liver, fat, immune and developmental cells. It is the first time this type of genome-wide analysis has been used to investigate Parkinson's disease.

Although much more work must be done to unravel exactly how these loci affect risk, there are interesting parallels between the team's findings and recent work done by others investigating Parkinson's. For example, three of the risk loci were found in immune cells, a promising finding as evidence suggests that Parkinson's may be linked to inflammation, the immune system's reaction to help fight off potential threats.

Patrik Brundin, MD, PhD, director of Center for Neurodegenerative Science and one of the study's authors, said, “Only a small percentage of Parkinson's cases are familial and have a clear and well-defined genetic inheritance. The remaining cases develop the disease seemingly at random. The emerging view is that Parkinson's is more of a syndrome, as a defined set of clinical symptoms and some shared features of brain pathology, with a diverse set of underlying causes. One surprising finding in our study is that only one gene locus was clearly linked to the brain while others were associated with tissues throughout the body. This supports the emerging theory that Parkinson's is a disorder that can be caused by disruptions in cellular processes in many locations, not just one. Furthermore, for the disease to develop in one person there has to be an unfortunate combination of a genetic predisposition and, as yet undefined, environmental insults.” The study was published on July 27, 2016, in the journal Scientific Reports.

Related Links:
Van Andel Research Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Latest Molecular Diagnostics News

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Blood Test Could Detect HPV-Associated Cancers 10 Years before Clinical Diagnosis